

TRI-STATE FERTILIZER RECOMMENDATIONS

for Corn, Soybean, Wheat, and Alfalfa

Tri-State Fertilizer Recommendations for Corn, Soybeans, Wheat, and Alfalfa

Authors

Steve Culman, School of Environment and Natural Resources, The Ohio State University

Anthony Fulford, School of Environment and Natural Resources, The Ohio State University

James Camberato, Department of Agronomy, Purdue University Kurt Steinke, Department of Plant, Soil and Microbial Sciences, Michigan State University

Contributing Authors

Laura Lindsey, Greg LaBarge, Harold Watters, Edwin Lentz, Ryan Haden, Eric Richer, Bethany Herman, Nicole Hoekstra, Peter Thomison, Rich Minyo, Anne Dorrance, Jeff Rutan, and Darryl Warncke

This publication draws heavily from the foundation provided by the original edition of the same title authored by Drs. M.L. Vitosh, J.W. Johnson, and D.B. Mengel.

Suggested citation: Culman, S., Fulford, A., Camberato, J., & Steinke, K. (2020). *Tri-State Fertilizer Recommendations*. Bulletin 974. College of Food, Agricultural, and Environmental Sciences. Columbus, OH: The Ohio State University.

A PDF copy of this report is available online at **extensionpubs.osu.edu.**

Top left photo on the cover is from iStock.com. All remaining images are from the author team.

Copyright © 2020, The Ohio State University

CFAES provides research and related educational programs to clientele on a nondiscriminatory basis. For more information, visit cfaesdiversity.osu.edu. For an accessible format of this publication, visit cfaes.osu.edu/accessibility.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	7
SOIL SAMPLING AND TESTING	11
Soil Sampling Strategies	11
Spatial Variability	
Sampling Depth	12
Time of Year to Sample	12
Intervals Between Sampling	12
Adaptive Nutrient Management	12
Sample Submission to a Soil Testing Laboratory	13
Soil Testing Procedures	13
SOIL pH AND LIME RECOMMENDATIONS	13
Recommended Liming Rates	14
Weakly Buffered Soils	16
NITROGEN	17
Nitrogen Best Management Practices	17
Nitrogen Timing	17
Nitrogen Placement	18
Nitrogen Sources	
Nitrogen Rates for Corn	20
Indiana Corn N Rates	
Michigan Corn N Rates	21
Ohio Corn N Rates	
Nitrogen Rates for Soft Winter Wheat	22
PHOSPHORUS AND POTASSIUM	24
Build-up and Maintenance Framework	24
Phosphorus and Potassium Fertilizer Recommendation Overview	27
P and K Critical Levels	27
Phosphorus and Potassium Fertilizer Recommendation Details	30
P and K Fertilizer Sources	30
Starter P and K Fertilizer	30
Phosphorus Placement to Minimize Losses	
Soil Test Extractants: Mehlich-3 as the New Default Extractant	31
P and K Crop Nutrient Removal Rates	31
P and K Soil Test Trends	
P and K Fertilizer Rate Calculations	
Phosphorus Fertilizer Recommendations	
Potassium Fertilizer Recommendations	38
CALCIUM, MAGNESIUM, AND SULFUR	40
MICRONUTRIENTS	42
Diagnosing Micronutrient Deficiencies	42
Summary of Micronutrient Trials	43
Micronutrient Recommendations	
Micronutrient Placement and Availability	45
Additional resources	46
APPENDIX 1:	48
APPENDIX 2:	49
APPENDIX 3:	

LIST OF TABLES

Table 1. Recommended Soil pH Levels for Field Crops in the Tri-State Region	.14
Table 2. Indiana and Michigan Liming Rates for Mineral Soils	.14
Table 3. Indiana and Michigan Liming Rates for Organic Soils	.15
Table 4. Tons of Liming Material (ENP of 2000 lbs/ton) Needed to Raise Soil pH to	
Desired Level for Ohio Mineral Soils	.15
Table 5. Tons of Liming Material (ENP of 2000 lbs/ton) Needed to Raise the Soil pH to the	
Target Level of 5.3 for Ohio Organic Soils	.16
Table 6. Common N Fertilizers Found in the Tri-State Region	.18
Table 7. Suggested N Rates for Corn Grain Grown in Michigan	. 21
Table 8. Ohio Recommended Nitrogen Rates (lb nitrogen/acre) for Corn Following	
Soybean Based on Price of Corn Grain and Nitrogen Fertilizer	22
Table 9. Ohio Recommended Nitrogen Rates (lb nitrogen/acre) for Corn Following Corn	
Based on Price of Corn Grain and Nitrogen Fertilizer	22
Table 10. Total (Fall + Spring) Nitrogen Recommendations for Soft Winter Wheat	23
Table 11. Overview of Build-up and Maintenance Phases and Associated Fertilizer	
Recommendations	27
Table 12. Recommended Mehlich-3 Soil Test Phosphorus and Potassium Levels	
(Critical Level and Maintenance Limit) for Field Crops in the Tri-State Region	28
Table 13. Recommended Fertilizer Rate Based on Expected Grain Yields When Soil Test	
P and K Are in the Maintenance Range	29
Table 14. Recommended Fertilizer Rate Based on Expected Forage Biomass Yields	
When Soil Test P and K Are in the Maintenance Range	29
Table 15. Nutrients Removed in Harvested Grain	32
Table 16. Nutrients Removed in Harvested Forage Biomass	32
Table 17. Equations Used for Calculating New Fertilizer Recommendations	35
Table 18. Corn Phosphorus Recommendations	36
Table 19. Soybean Phosphorus Recommendations	36
Table 20. Wheat Phosphorus Recommendations	36
Table 21. Corn Silage Phosphorus Recommendations	37
Table 22. Alfalfa Phosphorus Recommendations	37
Table 23. Corn Potassium Recommendations for Ohio and Indiana	38
Table 24. Soybean Potassium Recommendations for Ohio and Indiana	38
Table 25. Wheat potassium recommendations for Ohio and Indiana	39
Table 26. Corn Silage Potassium Recommendations for Ohio and Indiana	39
Table 27. Alfalfa Potassium Recommendations for Ohio and Indiana	40
Table 28. Recommended Mehlich-3 Soil Test Critical Levels Calcium, Magnesium, and	
Sulfur for Field Crops in the Tri-State Region	41
Table 29. Sulfur Removal Rates in Field Crops	. 41
Table 30. Crop and Soil Conditions Under Which Micronutrient Deficiencies May Occur	42
Table 31. Corn and Soybean Tissue Ranges at Three Development Stages Across Three	
Sites Over Two Years	43

	dicronutrient Plant Tissue Sufficiency Ranges for Corn, Soybean, Alfalfa,	
	and Wheat	
	Micronutrient Recommendations Based on 1.0 and 0.1 N HCI Extractants	
	forn Phosphorus Recommendations Based on Bray P1 quantified colorimetrically	19
	Soybean Phosphorus Recommendations Based on Bray P1 quantified	40
	colorimetrically	
	Wheat Phosphorus Recommendations Based on Bray P1 quantified colorimetrically	19
	Corn Silage Phosphorus Recommendations Based on Bray P1 quantified	- ^
	colorimetrically	υU
	Alfalfa Phosphorus Recommendations Based on Bray P1 quantified	- ^
	colorimetrically	υC
	Corn Potassium Recommendations for Ohio and Indiana Based on Ammonium	_4
	Acetate	51
	oybean Potassium Recommendations for Ohio and Indiana Based on	_4
	Ammonium Acetate	51
	Wheat Potassium Recommendations for Ohio and Indiana Based on	
	Ammonium Acetate)2
	Corn Silage Potassium Recommendations for Ohio and Indiana Based on	
	Ammonium Acetate	2د
	Alfalfa Potassium Recommendations for Ohio and Indiana Based on Ammonium	
A	Acetate5	53
LIST	OF FIGURES	
Figure 1. Th	ne Original Tri-State Fertilizer Recommendation Framework2	25
Figure 2. Th	he New Tri-State Fertilizer Recommendation Framework2	25
Figure 3. Po	ounds of P2O5 fertilizer required to increase soil test phosphorus levels by 1 part	
per	r million in 16 Kentucky soils (Adapted from Thom and Dollarhide, 2002). Red	
ver	rtical, dashed lines indicate the tri-state maintenance range for corn and soybean2	26
Figure 4. So	oil test phosphorus trends over years of a corn-soybean rotation in three Ohio farms	
W	vith three fertilizer rates: not-fertilized (0), fertilized at grain nutrient removal rates (1x),	
a	and fertilized at twice to three times the grain nutrient removal rates (2-3x). The first 9	
ye	ears was fertilized at twice the removal rate (2x) and starting in 2016 this rate was	
in	ncreased to 3x3	33
Figure 5. So	oil test potassium trends over years of a corn-soybean rotation in three Ohio farms	
W	rith three fertilizer rates: not-fertilized (0), fertilized at grain nutrient removal rates (1x)	
ar	nd fertilized at twice to three times the grain nutrient removal rates (2-3x). The first 9	
ye	ears was fertilized at twice the removal rate (2x) and starting in 2016 this rate was	
in	icreased to 3x3	34
Figure A1. (Comparison of Phosphorus Recommendations in 1995 v. 2020 for Each Crop (Corn	
	at 180 bu/ acre, Soybean at 60 bu/acre, Wheat at 80 bu/acre, Corn Silage at 24 tons/	,
	acre, Alfalfa at 4 tons/acre)	
	Comparison of Potassium Recommendations in 1995 v. 2020 by Cation Exchange	
_	Capacity (CEC) Class and Each Crop (Corn at 180 bu/ acre, Soybean at 60 bu/acre,	

FOREWORD

The *Tri-State Fertilizer Recommendations* for Corn, Soybeans, Wheat and Alfalfa (Extension Bulletin E-2567) was first published in 1995 and has served as a cornerstone in nutrient management in field crops for Indiana, Michigan, and Ohio. Field crop production practices in this region have changed over the past two and a half decades, including general reductions in tillage and crop rotations, greater plant populations and grain yields, new pests and diseases, and the emergence of precision soil sampling and fertilizer rate and placement technologies. Water and air quality issues in this region also underscore the

need to manage nutrients as judiciously and profitably as possible. In short, there is ample justification for a revision of the fertilizer recommendations and this publication represents the first step to update fertilizer recommendations in this region. The focus of this document is on managing mineral fertilizer sources in field crop systems. Animal manures and biosolids are important sources of nutrients in this region and management guidelines are provided wherever appropriate, however, proper management of these nutrient sources requires additional consideration that can lie outside the scope of this document.

ACKNOWLEDGMENTS

This publication represents a tremendous collective effort by many committed agricultural professionals with the ultimate goal of providing objective and scientifically vetted nutrient management information to farmers in this region. The authors would like to thank the following individuals for their contributions in helping generate data:

Eric Anderson	John DeLong	Clifton Martin	Van Slack
Mark Badertscher	Jacob Dennis	Jeff McCutcheon	Jacci Smith
John Barker	Nick Farquhar	Dave McKinniss	Jeff Stachler
Amanda Bennett	Jason Greve	Jared McLaughlin	Mike Sword
Bob Battel	Paul Gross	Martin Nagelkirk	Marilyn Thelen
Chris Bruynis	Lee Havens	Phillip Neal	Luke VanTilburg
Florian Chirra	Andrew Hofner	Joe and Clint Nester	Myron Wehr
Chris Clark	Don Jackson	Les Ober	Martha Winters
Bruce Clevenger	Carri Jagger	Tom Puch	Ted Wiseman
Sam Custer	Phil Kaatz	Dustin Ramsier	Chris Zoller
Matt Davis	Rory Lewandowski	Jeff Rice	
Joe Davlin	John Linder	Laura Ringler	
Carl DeBruin	John Mackson	George Silva	

We sincerely appreciate all the analytical service provided by Bill Urbanowicz and Spectrum Analytic, as well as the support from A&L Great Lakes Laboratories.

We also would like to thank the following individuals who provided valuable feedback on the draft:

Tom Bruulsema	Matthew Lane	John Spargo	Ron Wyss
Jamie Bultemeier	Robert Mullen	Mark Sulc	
Craig Houin	Will Osterholz	Randall Warden	

The work was made possible through the committed financial support of the Ohio Soybean Council, Ohio Corn Checkoff Program, Ohio Small Grains Checkoff Program, and the USDA National Institute for Food and Agriculture.

United States Department of Agriculture National Institute of Food and Agriculture

Additional support was provided by the Corn Marketing Program of Michigan, the Michigan Wheat Program, Michigan State University Project GREEEN, Michigan AgBioResearch, the Michigan State University's College of Agriculture and Natural Resources, and the School of Environment and Natural Resources at The Ohio State University.

EXECUTIVE SUMMARY

The *Tri-State Field Crop Fertilizer Recommendations for Indiana, Michigan, and Ohio* have been revised and updated. Extensive research station and on-farm trials have been conducted over the past decade to validate and refine the guidelines. In general, the fertilizer recommendations originally published in 1995 provide a solid framework for managing fertilizers and soil fertility. Some changes, however, have been made to the recommendations. Here are the important points:

- Soil sampling remains a critical component of effective nutrient management.
 - ◆ Soil sample in a consistent way every 3 to 4 years at no more than 25-acre samples.
 - Adapt nutrient management based on trends over time.
- Soil pH remains one of the most important aspects of supplying adequate nutrition to crops.
 - Soil pH should be kept between 6.0 and 6.8 for field crops.
- Optimizing nitrogen management is challenging and requires careful consideration of many factors.
 - Nitrogen rate recommendations for corn are based on an economic model designed to maximize farmer profitability (maximum return to N (MRTN)) available at cnrc.agron.iastate.edu.
 - Nitrogen recommendations for wheat have been updated and are similar to the original recommendations.
- Soil test levels determine phosphorus and potassium fertilizer application rates and timing.

Soil Test Levels Classify Soils into One of Three Phases

Assessment	Rate to Apply	When to Apply
Deficient	Crop removal + fertilizer to build soil test levels	Immediately, before next crop
Optimal	Approximate crop removal	Sometime within the rotation
Sufficient	Do not fertilize	Do not fertilize

- Mehlich-3 is now the default soil extractant that has replaced Bray P1 for phosphorus and ammonium acetate for base cations. Mehlich-3 P returns approximately 35% higher soil test phosphorous (STP) values than Bray P1. Mehlich-3 K returns approximately 14% higher soil test potassium (STK) than ammonium acetate.
- Optimal soil test levels for all crops are largely consistent with the original recommendations, except for revising the values to reflect Mehlich-3 as the soil extractant.

New Mehlich-3 P and K Optimal Levels for Field Crops in the Tri-State Region

		Potassium (Mehlich-3 K)		
Crop	Phosphorus (Mehlich-3 P)	Sandy soils (CEC <5 meq/ 100g)	Loam and clay soils (CEC >5 meq/ 100g)	
Corn, Soybean	20-40 ppm	100–130 ppm	120–170 ppm	
Wheat, Alfalfa	30-50 ppm	100–130 ppm	120–170 ppm	

- Crop removal rates were updated with current analyses of grain P and K concentrations.
- Nutrient removal rates per bushel of grain have decreased, especially with potassium.

Nutrients Removed in Harvested Grain			
	Grain Nutrient Removal Rate		
Crop	lb P ₂ O ₅ / bushel	lb K ₂ O/ bushel	
Corn	0.35	0.20	
Soybean	0.80	1.15	
Wheat	0.50	0.25	

Crop	Forage Nutrient Removal Rate		
Сюр	Ib P ₂ O ₅ / ton	lb K ₂ O/ ton	
Wheat Straw	3.7	29	
Corn silage	3.1	7.3	
Alfalfa	12.0	49	

Source: International Plant Nutrition Institute (2014), dry matter basis: 100% for wheat straw and alfalfa; 35% for corn silage (0% moisture for wheat straw, 65% moisture for corn silage).

 Updated P and K fertilizer rates are based on expected yield goals when soil test P and K are in the maintenance range (optimal):

		Recommended Fertilizer Rate		
Crop	Yield	IN, MI, OH	IN & OH	MI
	bushel/acre	lb P ₂ O ₅	lb K ₂ O/ acre	Ib K ₂ O/ acre
Corn	150	55	50	30
	200	70	60	40
	250	90	70	50
	300	105	80	60
Soybean	30	25	55	35
	50	40	80	60
	70	55	100	80
	90	70	125	105
Wheat	60	30	35	15
	90	45	45	25
	120	60	50	30
	150	75	60	40

- Soils in the tri-state region typically supply adequate Ca, Mg, S and micronutrients for crop production.
- Sulfur deficiencies remain infrequent but are increasing.
- The judicious use and placement of fertilizer remains a key factor in running a profitable farming operation.
- The concept of soil fertility should be extended beyond fertilizer management to include sound agronomic practices that promote soil biology and physical structure in field crop systems.

Quick Reference Guide to Tri-State Fertilizer Recommendation Changes

What has changed?	Why the change?	Details		
Soil Sampling				
Sample every 3 to 4 years in a consistent way as the foundation for an adaptive nutrient management program.	No changes	<u>Page 11</u>		
Soil pH and	Lime Recommendations			
Michigan and Indiana liming recommendations are consistent, Ohio recommendations are different.	States label and regulate liming materials differently.	<u>Page 13</u>		
Nitrogen Fe	rtilizer Recommendations			
Corn N recommendations are now based on economic model to maximize profitability.	Fluctuating grain and fertilizer prices necessitate a focus on economics in addition to yield.	<u>Page 20</u>		
Wheat N recommendations have been updated.	They are calibrated with recent field trials with modern varieties.	Page 22		
Phosphorus and	Potassium Recommendations			
Management framework drops drawdown range, makes build-up recommended but not required.	Recommendations are simplified to provide farmers with greater flexibility to manage nutrients profitably.	Page 24		
Default soil test P and K levels now based on Mehlich-3.	Make recommendations consistent with current soil laboratory practices.	Page 31		
P critical level 20 ppm for corn and soybean, 30 ppm for wheat and alfalfa (Mehlich-3 P).	This update is based on extensive field trials over past decade.	Page 27		
K critical levels are 100 ppm for sandy soils, 120 ppm silt and clay soils (Mehlich-3 K, all crops)	This update is based on extensive field trials over past decade.	<u>Page 27</u>		
Grain nutrient removal rates per bushel of yield have decreased.	Crops are yielding more but grain nutrient concentrations have decreased.	Page 31		
Calcium, magnesium, sulfur recommendations				
Liming supplies sufficient Ca & Mg; S deficiencies remain infrequent but are increasing.	No changes	Page 40		
Micronutrients				
Most soils supply sufficient micronutrients; diagnostic tools are limited.	No changes	Page 42		